新しい技術 ギガキャスティング

ギガキャストとも呼びますが、これは自動車のアンダーボディ、言ってみれば床面を構成する下部ボディを、一体成形の鋳造で作っちゃうと言う技術です。
始めたのはテスラですが、今はそれを各社がやろうとしています。EV向けとしての採用が主流のようです。

これ、何が良いかというと、今まで数十点の大型のプレス部品をスポット溶接で一体化していた構成を、鋳物として一つの部品にしてしまおうということで、コスト削減には大きく効いてきます。
おまけに強度や剛性も確保しやすいのではないかな。

作り方としては、巨大な金型を用いて、溶融した材料を流し込んで冷やして型から抜くという工程です。
材料はアルミ合金ですね。

初めて耳にしたのはずいぶん前ですが、ここに来て各社が追従していく姿勢を見せていることに少々驚いています。
良いとか悪いではなく、この製造方法の変化はかなり大がかりなものなので、そのスケール感というか、チャレンジ精神に対してです。

この方法を採ると、現行の製法に対して、思いのほか色々変えることになります。

まず、材料はアルミ合金などの軽合金であること。
現行の多くの量産車は鉄系の合金でできています。
鉄だと融点が高い事に加え、比強度といって、重さと強さで考えるとアルミやマグネシウムに劣ることになります。
そう、同じ重さだと、鉄よりアルミの方が強いのです。
そういうわけで、電池が重いEVにはピッタリなのでしょうね。

で、フロア周りをアルミで作るとなれば、上のボディ、床周りのアッパーボディに対して、アッパーボディと呼びますが、そっちもアルミで作ることになります。これ、一般論ですが。
なぜかというと、鉄とアルミを接触させて使うと、「電食」といって、腐食しちゃうからです。
なので、大抵は車体全体をアルミで作ることになるのです。

これは日本にはキツいはず。
なぜって、アルミの精錬は電気を使うので、電気代の高い我が国には非常に不利だから。
国内で精錬すると高く付きます。
なので、海外産の精錬済みの材料を購入して製造することになるでしょう。
その点、テスラのあるアメリカとか、フランスなんかは原発があるので電気代が安くて有利です。
現に、夢工房の学生達も、最近では強度の高いアルミ合金は、国産材ではなくフランス製を入手して使っています。

あと、ちょっと気になるのは、この製法で作ったクルマがクラッシュした場合の補修です。
鋳物の部品は、一般的に脆性が高いです。柔軟性が低くて脆いってことです。
なので、変形した場合には従来のような鈑金修理が難しいのではないかな。
あと、鋳物の溶接はできないことはありませんが、やりにくいです。強度も出しにくいはず。

さらに言うなら「では変形した部品は交換してしまおう!」っていうわけにもいかないでしょう。やっちゃうのかな?
だって、床面一式ですよ。そりゃエライことだ。
なので、フロア周りの変形を伴う事故なら即廃車?

とまぁ、色々とあるわけです。
もちろん、良いとか悪いとか一概に言えるものじゃなくて、全てはトレードオフですけど。
それをメリットとして採用できるのは、財力がある、国力が高い国のメーカーでしょう。

そんなことを考えていると、クルマはまだまだアイデアでゲームチェンジできる余地はあるんだよなぁ、とか、今後はこの調子で作る方も買う方も二極化していくのか?とか思うのです。
うむ。興味深い。

電気の時代がやってくる 2024年版

一時はかなり盛り上がったEV(電気自動車)ですが、最近ではだいぶ様子が変わっていましたね。

エネルギー密度にまつわる重量の問題や、コストや充電時間の問題など、基本的なところに関しての問題は当初のまま…それはもう、100年前から変わらないわけですが、ここに来て新たな問題が露呈してきました。
…と思っています。

現状、中国は相変わらずEVでイケイケ状態のようです。
対して、欧米では一頃の盛り上がりが見られません。

そこでは何が起きているのでしょう?

以下は私の予想です。

バッテリーの原料は、いわゆる発展途上国で採掘されます。主にアフリカとか南米ですかね。
人件費が安いので当然です。
その採掘現場でも、色々問題があるようですが、ここでは細かいところに触れるのはやめましょう。

そして、採掘した原料を精製したり、それを使ってバッテリーを生産する国は限られていて、中国が最大のシェアを握っています。

欧米と中国の仲が悪くなれば、バッテリーが思うように使えなくなる可能性があります。

自動車の多くがEVにシフトした状態で、ある日突然、バッテリーの価格が急上昇したり、手に入らなくなったら、それはもう大変なことになります。

いわゆるエネルギー安保の観点から、EVシフトは妥当では無い、という判断は働いているでしょうね。

そういったこと以外にも、世の中は問題だらけなようです。
そして、我々が入手する情報は、今やフェイクなのか正しいのかすら良く分かりません。
そもそも、ひとつの事象に対して色々な見方ができるのに、特定の見方をした情報源に頼っている時点で、正しく物事を見られているのかは怪しいものです。

世の中気になることだらけなのですが、我々は雑音に惑わされることこと無く、やるべきことをやるべきなのでしょうね。

その「やるべき」というのは、「己が信じること」です。

クルマの電気のお話し

何でこんなネタにしようかと思ったかというと、最近テスラのサイバートラックがユーザーの手元に届き始めて、少しずつ情報が入ってきたからです。

別にEVに乗り換えたいとかそういうことではなくて、やはり専門が自動車ですからね、色々気になるわけですよ。

凄い形してるな、とか
デカいな、とか
重いな、とか

あのクルマ、何から何まで変わっていて興味深いのですが、EVなわけなので、電気の話でもしてみようかなと思ったのです。

当然、電気で動いているのですが、気になったのは駆動力を発生させる方ではなくて、補器類など、その他諸々を動かしているバッテリーの電圧です。

一般的なEVは、走行用バッテリーの他に、12ボルトのバッテリーを積んでいます。
それで、ライトとかオーディオとか、走行とは関係ない物を動かしています。搭載しているバッテリーの役目は、大まかに言ってエンジンのクルマと一緒です。

で、どうもサイバートラックは、この補器用バッテリーの電圧が48ボルトなんですね。
一般的なクルマの4倍ですよ。
ちなみに、既存の大型トラックなんかは24ボルトです。

さて、なぜ高電圧化するのでしょうか?
というのが今回のネタです。

理由は以下の2つだと思います。

一つは、サイバートラックは、ステア・バイ・ワイヤを採用しているので、あのデッカイタイヤを強力なモーターで転舵する必要があります。当然、消費電力は大きい。
そのためには高電圧が都合が良いのでしょうね。

二つ目は、高電圧にすると細いワイヤーハーネス(電線のこと)を使えるということです。

え?そんなこと?
と思うかもしれませんが、多分これもメリットとしては大きいと思っています。

恐らくあのクルマ、制御だらけで電線だらけのはずです。
ワイヤーハーネスだけでも相当な重さになるでしょう。電線の導体は銅ですから。

そして、束ねられたワイヤーハーネスが車体のあちこちに這い回ることになるわけですが、それが細いということになると、設計の自由度がかなり向上するはずです。

近年は銅のコストが上がっているので、使用量が減ればハッピーでしょうしね。

そうそう、何で高電圧にすると電線の径を下げられるかという理屈なのですが、電線の径は、流れる電流値によって決まります。電圧ではなく。

電気をたくさん食う物を動かそうとして大きな電流を流すと、電線が発熱します。
電気エネルギーが熱エネルギーに変換してしまって、ロスが大きくなります。
つまりシステムの効率が低いということになります。
発熱すると、被覆が溶けてショートしちゃったり、最悪の場合は火災が発生したりもします。
なので、そういう場合は電線径を大きくする必要があるのです。

電力の式は
P=VI
です。
Pは電力、Pは電圧、Iは電流です。

Pをデッカイやつにしたとき、Vを大きくできるならIを大きくしなくて済むのです。
Vが大きくて、Iが小さいなら、電線を太くする必要はありません。
だから高電圧で効率が良いシステムにしたいわけですね。

これ、我々の身の回りも同様です。

発電所から出てくる送電線は、30万~80万ボルト、変電所を通過して、我々の家の前までは6600ボルトと高電圧です。
これでも電圧を大きく、電流を小さくして、送電のロスを減らして電線の径も小さくしようと、そうということです。

ただ、良い事ばかりではなく、やはり高電圧は危険だったりもするわけで、あとは高い電圧を低い電圧に変換して使うところも多いでしょうから、そこに使われる部品のコストとか信頼性とか、そういったこともあるでしょう。

ちょっと専門的なことになっちゃって申し訳ありませんが…

電装システムの考え方としては、従来のように、電源線、信号線と大量のワイヤーハーネスを隅々にまで這わせるのでは無い、新しいやり方をしているのではないかと予想しています。

車体のあちこちに、最小限の電源とネットワークの線を伸ばしておいて、末端のデバイスで処理させれば、ワイヤーハーネスの回路自体はもの凄く単純化できるはずで、クルマの仕様が変更になったりしても容易に対応できます。
そんな新しいことをやってるんじゃないかな、と見ているのですが、その辺は今後の上方を楽しみに待ってみましょう。

というわけでサイバートラック、見た目だけじゃ無く、色々チャレンジしているようです。